Javascript is required
до тиража
Суперприз
Премиум раздел
Лотерея Европейская EuroJackpot

Информация о лотерее

Правила. Европейская лотерея EuroJackpot проводится в формате 5 из 50 + 2 из 12 . В лотерее 139,838,160 различных вариантов выпадения комбинаций шаров. Вероятность выиграть джекпот составляет 1 из 139,838,160, но кроме джекпота есть ещё несколько категорий второстепенных призов , и максимальный шанс на выигрыш второстепенного приза составляет 1 из 42. Для повышения шансов на выигрыш используйте лотерейные системы .

Место проведения - Хорватия, Чехия, Дания, Эстония, Финляндия, Германия, Исландия, Италия, Латвия, Литва, Нидерланды, Норвегия, Польша, Словакия, Словения, Испания, Швеция, Венгрия, Европа

Налог с выигрыша в лотерею. Билеты приобретаются на территории Испании, где лотерейные выигрыши облагаются местным налогом по двум налоговым категориям. Категория 1: выигрыши до €2 500 не облагаются налогом; категория 2: суммы свыше €2 500 облагаются налогом 20%. Граждане других стран имеют право на получение полного возврата налоговых выплат – читайте подробнее о лотерейном налогообложении.

Что можно выиграть

Распределение призов по категориям в лотерее Европейская EuroJackpot
Категория призаНеобходимо угадатьПриз
15+2Euro Numbers36
25+1Euro Number8.5
353
44+2Euro Numbers1
54+1Euro Number0.9
640.7
73+2Euro Numbers0.6
83+1Euro Number3.1
934.3
102+2Euro Numbers3
112+1Euro Number19.1
121+2Euro Numbers7.8

Взгляните на шансы выиграть приз в соответствующей категории.

Анализ лотереи Европейская EuroJackpot

Вероятность выиграть в лотерею Европейская EuroJackpot по схеме 5 из 50 плюс 2 из 12 составляет 1 к 139,838,160.

Количество всех чисел в Поле № 1: 50. Сумма всех чисел в Поле № 1: 1275. Количество всех чётных чисел в Поле № 1: 25. Сумма всех чётных чисел в Поле № 1: 650. Количество всех нечётных чисел в Поле № 1: 25. Сумма всех нечётных чисел в Поле № 1: 625.

Минимально возможная сумма чисел в комбинации (Поле № 1): 15. Максимально возможная сумма чисел в комбинации (Поле № 1): 240.

Количество всех чисел в Поле № 2: 12. Сумма всех чисел в Поле № 2: 78. Количество всех чётных чисел в Поле № 2: 6. Сумма всех чётных чисел в Поле № 2: 42. Количество всех нечётных чисел в Поле № 2: 6. Сумма всех нечётных чисел в Поле № 2: 36.

Минимально возможная сумма чисел в комбинации (Поле № 2): 3. Максимально возможная сумма чисел в комбинации (Поле № 2): 23.

Между минимально и максимально возможными суммами чисел в комбинации находится точка, которая соответствует оценке математического ожидания.

Для шаров в поле № 1 это 128. Для шаров в поле № 2 это 13.

На практике это означает, что при очень большом количестве выпадений чаще всего будет выпадать суммы шаров близкие к математическому ожиданию и реже суммы близкие к минимуму или максимуму, а график частоты выпадения сумм будет стремиться к нормальному распределению.